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We consider a particular class of self-organized critical models. For these systems we show that the
Lyapunov exponent is strictly lower than zero. That allows us to describe the dynamics in terms of a
piecewise linear contractive map. We describe the physical mechanisms underlying the approach to the
recurrent set in the configuration space and we discuss the structure of the attractor for the dynamics.
Finally the problem of the chaoticity of these systems and the definition of a predictability are addressed.
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The wide class of systems in nature which show self-
organized criticality (SOC) [1-3] has attracted much at-
tention in the last few years. In particular, sandpile mod-
els [4] represent an interesting example of a SOC system;
that is, of a system which evolves spontaneously in a crit-
ical state characterized by spatial and temporal self-
similarity. Dropping sand slowly, grain by grain, on a
limited base, one reaches a situation in which the pile is
critical, or has a critical slope. That means that a further
addition of sand will produce slidings of sand
(avalanches) that can be small or cover the entire size of
the system. In this case the critical state, characterized
by scale-invariant distribution for the size and lifetime of
the avalanches, represents the attractor for the dynamics
reached without the need of tuning of any critical param-
eter.

Many results has been obtained on the side of the char-
acterization of the critical state in terms of critical ex-
ponents, and in clarifying the nature of self-organization
[5-7]. In this paper we address the problem from a
different point of view in order to characterize the
dynamical properties of a class of sandpile models. The
estimate of a suitable Lyapunov exponent, which turns
out to be lower than zero, and the randomness of the
model, allow us to describe the structure of the attractor
in the configuration space. A numerical analysis of the
divergence rate of two initially close configurations al-
lows us to clarify the problem of the definition of a pred-
ictability for such a system.

We will refer in particular to the so-called Zhang mod-
el [8], a continuous, non-Abelian, version of the Bak,
Tang, and Wiesenfeld (BTW) model [4], defined on a d-
dimensional lattice. The variable on each site E; (inter-
pretable as energy, sand, heat, mechanical stress, etc.) can
vary continuously in the range [0,1] with the threshold
fixed to E,=1. The dynamics is the following: (a) we
choose a site in a random way, and we add to this site an
energy 8 (rational or irrational); (b) if at a certain time ¢ a
site, say i, exceeds the threshold E_, a relaxation process
is triggered, defined as

E;  nn—E;innt _27; ’
E;—0

where NN indicates the 2d nearest neighbors of the site i;

(1)
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(c) we repeat point (b) until all the sites are relaxed; and
(d) we go back to point (a). We can also define a deter-
ministic version of this model in which, at each addition
time, one increases the variable of every site of the quan-
tity & and then one follows the same rules of the random
case.

The dynamics of this model, either in the random as in
the deterministic case, can be seen as described by a
piecewise linear map. In fact, indicating with
x ={x;},ep the configuration of the system at a certain
time, where D CZ? is the bounded domain whose cardi-
nality is |D|=N? with N being the linear dimension of
the lattice, the operator corresponding to a toppling at
site i is given by

Aj(Ax);=x;—8; ;x;+ 5 (2 )8,',jx,~ , (2)
YN

ij

where (i,i’) means that i and i’ are nearest neighbors.

Equation (2) shows that the single toppling is a linear
operator, and acts as a local Laplacian. The evolution of
a configuration up to the time ¢ can be written as [9]

t
x()=T'xo=Lxq+8 3 Li—s41lx(s » 3)
s=1
where L, is a linear operator defined as a product of
linear operator A as

t q(1)
LtE H At—s+1 ’ AtE H Aj(t,i) . 4)
s=1 i=1
g (t), in the expression of the avalanche operator 4, at
the time ¢, is the number of topplings of the avalanche
started at the time ¢ and j(¢,i), the site in which the ith
toppling of this avalanche occurs. In fact, in a single
avalanche the evolution of a generic vector x is ruled by

the expression

X =8 anBjtg—1 " BB 1%
q(1)
=1 A500x - 3

i=1
By iterating this process for the entire avalanche up to
the time ¢, we obtain (3) via Eq. (4). x, is the initial
configuration, and 1, is a vector in R? whose component i
is 1 and all the others are 0. k (s) defines the sequence of
sites over which there will be the random addition of en-
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ergy at the time s. It is worth stressing how ¢ indicates
just the time of addition of energy, and every single
avalanche is supposed to happen between two addition
times.

In order to characterize the linear map (3) we can
define the Lyapunov exponent for this system. If the dy-
namics is C!, i.e., described by a continuous map with
continuous derivative, the Lyapunov exponent corre-
sponding to a given trajectory x (¢)=7T"x, can be defined,
linearizing the dynamics in the neighborhood of x (¢), as
(10]
1T'dx |

ldx| ~

where | | is a norm in R'?\. In our case the dynamics, be-
ing described as a piecewise linear map, is not C'. Never-
theless if the two trajectories x(¢) and y(z) make the
same sequence of topplings, Eq. (6) holds with the substi-
tution y —x—dx. In fact, in this case, it holds
T —T'x=T'y —x)=T'dx. Therefore, definition (6)
for the Lyapunov exponent begin to fail when, at a cer-
tain time, the two configurations make different top-
plings. It is easy to see that such a situation occurs when,
for one configuration, x;(#)=1 holds for some i and ¢. In
this case a slight difference in the second configuration
yi(t)=x;(t)+e will produce a toppling just in the y
configuration. From this point onward the two
configurations will follow different sequences, and
definition (6) fails definitely. In the phase space we can
then recognize a zero-measure set of “bad” points on
which two configurations close each other at will, and
will diverge definitely. We can then identify this set as

I={x={x;};cq: I it: x;(1)=1} (7

A= tlim supsup . _pio| %ln (6)

We are going to discuss this point again below. It is
easy to see that the Lyapunov exponent is not positive.
In fact, the dynamics in the tangent space, the dynamics
of a small difference between two configurations, follows
the same rules of the usual dynamics, and the “error” is
redistributed to the nearest neighbor site.

It is then clear that the distance between two
configurations, given by |y —x|=3,ldx;|, where
dx;=(y; —x;), being conserved in the topplings far from
the boundaries, can just decrease when a site of the
boundary topples. We can conclude that A <0.

In [9] we demonstrate a theorem that states that the
maximum Lyapunov exponent is strictly lower than O
and, in particular

1
< —
T |D|[d(D)+1(n|D|+1)(1/8+1)
where d (D) is the diameter of the set D.

An immediate consequence of this theorem is that the
dynamics, up to the time ¢ (for ¢ sufficiently large), is
given by a piecewise linear contractive map.

This allows us to address the following problems: (i)
What is the structure of the snapshot attractor? (ii) How
is the attractor of this system? (iii) What can be said
about the predictability of this system?

(i) A snapshot attractor is obtained by considering a
cloud of initial conditions and letting it evolve forward in

, (8)
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time under a given realization of the noisy dynamics.
The resulting measure at a single instant is the snapshot
attractor. It is easy to show [9] that, given a set 4 in the
configuration space I', the evolution tends to contract the
measure of this set. This means in particular that the
snapshot attractor has measured zero. Two different
mechanisms concur in the formation of the snapshot at-
tractor: (a) a volume contraction mechanism due to the
effect of the negative Lyapunov exponent, and (b) a split-
ting mechanism which maps single sets of configurations
in two or more distinct sets that are also far apart in the
phase space. The dynamical balance of these two effects
represents a basis for the definition of a predictability for
such a system.

(i) The attractor of the system is obtained by looking
at a single initial condition under a realization of the ran-
dom dynamics and plotting, after a long transient period,
its position, time by time. In order to study the attractor
of this system we performed some numerical simulations,
by considering a one-dimensional chain of sites driven in
a random way.

In the random case a box-counting analysis [12] on a
two-dimensional projection of the configuration space
seems to show the existence of a fractal attractor with a
dimension D, for the recurrent set of configurations.
Figure 1(a) shows the two-dimensional projection of the
configuration space of a linear chain of L =80 sites. Fig-
ure 1(b) reports the result of the box-counting analysis of
the set of Fig. 1(a).

It is worth stressing that, for each given starting
configuration, or better, for each set of the configuration
space whose points follow the same sequence of topplings
[9], the dynamics is described by an iterated function sys-
tem (IFS) [13]. In [13] it has been proved that, when the
iterative function is a contractive linear function, it exists
a unique invariant measure. Examples of geometrical ob-
jects generated by an IFS are the cantor set or the Sier-
pinsky gasket [13]. In our case the situation is more in-
volved, as the linear map is piecewise. Nevertheless it
seems reasonable that the attractor is fractal.

(iii) At this point we would like to address the problem
of the definition of a predictability for these systems. At
first one could think that the existence of a negative
Lyapunov exponent should assure a perfect predictabili-
ty. That is not true. What makes the situation complex
is the splitting mechanism mentioned above. Let us
again consider the evolution of two close configurations
differing by a quantity e. When the energy of a site in a
configuration reaches exactly the threshold, no matter
how little € is, it could produce a different sequence of
topplings in the two configurations. We may say that the
smaller € is in respect to the minimal distance d;, of
whatever site from the threshold, the higher will be the
probability that the configurations will follow the same
sequence of topplings. We then have to compare the two
rates of approach of two configurations, and of the ap-
proach to the threshold E,=1 or, what is the same, to
the set 1.

Figure 2 shows the rate of approach to the set I. This
is obtained by simulating the evolution of a generic
configuration driven by adding an irrational quantum of
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that |A| > A’ suggests the existence of a sort of threshold
in € (7).

In the random case the threshold has a probabilistic
value. In fact if €(0) < e we cannot exclude the possibili-
ty of different topplings, due to a too rapid approach to
the set of “bad” points. The probability associated with
this event become exponentially small as the time goes on
because, while the system approaches the set I, at the
same time, two different configurations tend to converge
on each other.

In order to confirm these predictions, we simulated the
parallel evolution of two different configurations in the
random case (for a system with L =30) with different
starting error €, and we plotted the distance (in the L'
norm) between the two orbits. The results, shown in
Figs. 4(a) and 4(b), respectively, for e=10"2 and 103
seem to confirm the existence of a probabilistic threshold
in € which determines the divergence or the asymptotic
convergence of two orbits.

These results place the problem of the definition of a
predictability into a wider perspective in which the
Lyapunov exponent is not the only relevant quantity. Up
to the time in which two different configurations make
the same sequence of topplings, the error € will decrease
and the system remains predictable. From this point on-
ward the evolution of the distance between the two

configurations seems far from being linked to the
Lyapunov exponent. The threshold mechanism, and then
the splitting mechanism, therefore play crucial roles in
determining the predictability of such systems.

We just gave an example in the case in which two
configurations are driven by the same noise. It is very in-
teresting, from the point of view of the predictability, to
investigate what happens when two configurations are
driven by different noises [14].

In conclusion we showed, for a particular class of sand-
pile models, the existence of a negative Lyapunov ex-
ponent which allows us to describe the system as a piece-
wise linear contractive map. We studied the structure of
the attractor for the dynamics of this kind of map, show-
ing the different mechanisms concurring with its forma-
tion and its low dimensionality. In the random case the
system seems to live asymptotically on a fractal attractor,
which can be put in relation with the attractor of an
iterated function system. Finally, we showed how the
predictability for such a class of models is related to a
threshold mechanism, in which the Lyapunov exponent is
not the only relevant quantity.
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